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Abstract: With the advent of new and affordable sensing technologies, CSCL 
researchers are able to automatically capture collaborative interactions with 
unprecedented levels of accuracy. This development opens new opportunities and 
challenges for the field. In this chapter we describe empirical studies and theoretical 
frameworks that leverage multimodal sensors to study dyadic interactions. More 
specifically, we focus on gaze and gesture sensing and how these measures can be 
associated with constructs such as learning, interaction and collaboration strategies in 
co-located settings. We briefly describe the history of the development of multimodal 
analytics methodologies in CSCL, the state of the art of this area of research, and how 
data fusion and human-centered techniques are most needed to give meaning to 
multimodal data when studying collaborative learning groups. We conclude by 
discussing the future of these developments and their implications for CSCL 
researchers.  
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Definitions & Scope 

Educational researchers have argued for decades that the field needs better ways to 
capture process data (Werner, 1937). More recently in CSCL, Dillenbourg et al. (1996) 
noted that “empirical studies have started to focus less on establishing parameters for 
effective collaboration and more on trying to understand the role which such variables 
play in mediating interaction. This shift to a more process-oriented account requires new 
tools for analyzing and modelling interactions”. Multimodal Learning Analytics (MMLA; 
Blikstein & Worsley, 2016) is about creating new tools to automatically generate fine-
grained process data from multimodal sensors. 
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More specifically, the focus of this chapter is on gesture and gaze data collected in co-
located interactions. We recognize that collaboration is the result of subtle micro-
behaviors, such as learners’ body position, gestures, head orientation, visual attention 
and discourse. These actions are complex, intertwined and result in a rich choreography 
of behaviors that create sophisticated social interactions. Figure 1 provides a visual 
representation of the key constructs of this chapter: 
 

 
Fig. 1 How different sensor modalities can help CSCL researchers capture constructs 
relevant to collaborative learning, and how this can be used to predict, model, explain 
and support productive behaviors. In this chapter, we focus on gaze and gestures (even 
though other modalities - such as speech - are highly relevant in CSCL settings)  
 
The first column shows modalities studied by CSCL researchers (e.g., gaze, gestures, 
speech, dialogue). These modalities provide “Raw Measures” of users’ gaze or body 
postures. This data is then used to capture specific “Observable Behaviors”, such as 
Joint Visual Attention (JVA) or body similarity. We can use these behaviors as proxies 
for “Theoretical Constructs” (Wise, Knight & Buckingham Shum, 2020), for example the 
quality of a group’s common ground (Clark & Brennan, 1991) or the extent to which 
group members mimic each other (Chartrand & Bargh, 1999).  
 
The raw measures, observables behaviors and constructs can be used to predict 
outcomes of interest (e.g., how well a group is collaborating), model collaborative 
processes (e.g., how social interactions change over time), explain them (e.g., 
contribute to theories of collaboration) or support collaboration (e.g., design 
interventions that use sensor data to support learning). In the sections below, we 
describe the history and development of MMLA. We then provide additional definitions 
for the constructs in Fig. 1 and provide concrete examples of their use. 



History & Development 

 
While MMLA seems to be a new and exciting methodological development, there has 
been a long tradition of designing multimodal devices to capture human behavior. At the 
beginning of the 20th century, Huey (1908) designed the first eye-tracker by having 
participants wear contact lenses with a small opening for the pupil. Because a pointer 
was attached to it, Huey was able to make new discoveries on effective reading 
behaviors. In the 1920s, a German pedagogue, Dr. Kurt Johnen, created a device to 
measure expert piano players’ breathing and muscular tension as a way to design 
better instruction for novices (Johnen, 1929). In 1977, Manfred Clynes built a device 
called a “sentograph” which attempted to detect emotions by extracting the length and 
force applied on a pressure-sensitive finger rest. There are many other examples of 
early “sensors” designed to capture human behaviors.  
 
Over the last decade, however, the affordability and accessibility of multimodal sensing 
has opened new doors for monitoring, analyzing, visualizing and regulating a variety of 
learning processes. Depth cameras such as the Microsoft Kinect can collect information 
about a person’s body joints (x, y, z coordinates), their facial expressions, and their 
speech 30 times per second. Researchers can obtain more than a hundred variables 
from this sensor, which represents +3000 data points per second for one person. This 
translates to roughly 10 million data points for an hour of data collection. Multiply this 
figure by the number of sensors (e.g., eye-trackers, galvanic skin response sensors, 
emotion detection tools, speech features) and number of learners to get a sense of the 
possibilities and challenges of combining sensor data with data mining techniques.  
 

State of the Art 
 
In this section, we describe the state of the art research methods for analyzing gaze and 
motion data from small groups in educational settings. We start with some definitions, 
conventions, and findings from the CSCL community and beyond. We conclude this 
chapter with a comparison of the state of the field for gaze and gesture sensing, 
comments on the future of associated methodologies and implications for CSCL 
researchers. 
 

Gaze Sensing in CSCL 

With sensing devices becoming more affordable, the last decades have seen an 
increasing number of CSCL researchers taking advantage of eye-trackers to study 
small collaborative groups. This line of work is grounded in the literature on joint visual 
attention (Tomasello, 1995). Joint attention is an important mechanism for building a 
common ground (i.e., “grounding”, which allows group members to anticipate and 
prevent misunderstanding; Clark & Brennan, 1991). Educational researchers have built 
on this idea and extended it to learning scenarios: “From the viewpoint of collaborative 
learning, misunderstanding is a learning opportunity. In order to repair 
misunderstandings, partners have to engage in constructive activities: they will build 



explanations, justify themselves, make explicit some knowledge which would otherwise 
remain tacit and therefore reflect on their own knowledge, and so forth. This extra effort 
for grounding, even if it slows down interaction, may lead to better understanding of the 
task.” (Dillenbourg & Traum, 2006) 
 
In other words, educational researchers go beyond the psycho-linguistic definition of 
grounding to focus on shared meaning making (Stahl, 2007). Shared meaning making is 
associated with “the increased cognitive-interactional effort involved in the transition 
from learning to understand each other to learning to understand the meanings of the 
semiotic tools that constitute the mediators of interpersonal interaction” (Baker et al., 
1999, p.31). It gradually leads to the construction of new meanings and results in 
conceptual change. There is some evidence suggesting that groups with high levels of 
joint visual attention are more likely to iteratively sustain and refine their common 
understanding of a shared problem space (Barron, 2003). Because eye-trackers can 
provide a rigorous measure of joint visual attention, gaze sensing has become an 
attractive methodology for studying grounding in collaborative learning groups. 
 
The state of the art of CSCL gaze sensing is a dual eye-tracking methodology where 
pairs of learners solve a problem together and learn from a shared set of resources. 
Early studies had two participants looking at a different computer screen equipped with 
an eye-tracker (Jermann et al., 2001). Participants can communicate through an audio 
channel and have access to the same interface. For dyadic analysis, the two eye-
tracking devices need to be synchronized so that the resulting datasets can be 
combined to compute measures of joint visual attention (JVA).  
 
After the data is acquired, there are established methodologies for computing JVA 
measures. Cross recurrence graphs (Richardson et al., 2007) are commonly used to 
visually inspect the joined eye-tracking datasets and identify missing data. JVA is then 
computed according to Richardson and Dale’s findings (2005), where they found that 
dyad members are rarely perfectly synchronized; it takes participants +/- 2 seconds to 
react to an offer of joint visual attention and respond to it. Thus, for a particular gaze 
point to count as joint visual attention, researchers usually look at a 4 seconds time 
window to check whether the other participant was paying attention to the same 
location. This methodology provides an overall measure of attentional alignment for 
dyads.  
 
One common finding is that levels of joint visual attention are positively associated with 
constructs that the CSCL community cares about. For example researchers have used 
established coding schemes to evaluate the quality of a dyad’s collaboration and 
correlated it with measures of JVA. Meier et al. (2007) developed a coding scheme that 
characterizes collaboration across 9 subdimensions: sustaining mutual understanding, 
dialogue management, joint information processing, information pooling, reaching 
consensus, division, time management, technical coordination, reciprocal interaction, 
and individual task orientation. Among those subdimensions, JVA has been repeatedly 
found to be significantly associated with a group’s ability to sustain mutual 
understanding (e.g., Schneider et al., 2015; Schneider & Pea, 2013). Some other 



studies have also found positive correlations between JVA and learning gains 
(Schneider & Pea, 2013), which suggests that this type of collaborative process is not 
just beneficial to collaboration, but also to learning. This shows that, to some extent, 
JVA measures can be used to predict collaboration quality and learning.  
 
Additional measures of JVA have been developed for specific contexts. For example, 
“with-me-ness” was developed to measure if students are following along with a 
teacher’s instruction (Sharma et al., 2014). This measure is calculated by aggregating 
three features of gaze data: entry time, first fixation duration and the number of revisits. 
Entry time is the temporal lag between the time a reference pointer (gaze) appears on 
the screen and stops at the referred location (x, y) and the time the student first looks at 
the referred location (x, y). The first fixation duration is how long the student gaze 
stopped at the referred location for the first time and revisits are the number of times the 
student's gaze comes back to the referred location within four seconds. 
 
In addition to these measures of JVA, CSCL researchers have also looked at the 
“attentional similarity” between participants (Sharma, Jermann, Nüssli & Dillenbourg, 
2013). For a given time window (e.g., 5 seconds), the proportion of time spent on 
different Areas of Interest (AOIs) is computed and compared across participants using a 
similarity metric (for example, the cosine similarity between two vectors). 
Papavlasopoulou et al. (2017) found that in a pair programming task, teenagers (13–17-
year-old participants) spent more time overall working together (higher similarity gaze) 
than younger participants kids (8–12 year-old). While this measure is similar to others 
described above, it uses a less conservative operationalization of joint visual attention. 
These measures provide alternative ways of modeling joint visual attention in small 
groups.  
 
It is also possible to detect asymmetrical collaboration from the eye-tracking data 
(Schneider et al., 2018). For each moment of joint attention, one can look at which 
participant initiated this episode (i.e., the person whose gaze was first present in this 
area during the previous two seconds) and which student responded to it (i.e., the 
person whose gaze was there second). The absolute value of the difference between 
the number of moments that each participant initiated and responded to represents the 
(im)balance of a group’s “visual leadership”. As an illustration, a group may achieve joint 
attention during 25% of their time collaborating together; let us say that one student 
initiated 5% of those moments of JVA, while the other student initiated 20% of those 
moments. Schneider et al. (2018) found this measure to be negatively correlated with 
learning gains – meaning that groups in which one person tended to always initiate or 
respond to an offer of joint visual attention were less likely to achieve high learning 
gains. These findings can help us explain how specific collaborative behaviors can 
contribute to learning. 
 
 



 
Fig. 2 (reproduced from Schneider, 2019): An example of using dual mobile eye-
tracking to capture joint visual attention in a co-located setting (in this particular case, 
pairs of participants had to program a robot to solve a variety of mazes). The two 
images on the right show the perspective of the two participants; the left image shows a 
ground truth where gaze points are remapped using the location of the fiducial markers 
detected on each image (the white lines connect identical markers).  
 
Additionally, researchers have started to go beyond remote collaboration and use dual 
eye-tracking in co-located settings using mobile eye-trackers (Schneider et al., 2018). In 
this type of setup, there is an extra step of spatially synchronizing the two eye-tracking 
datasets, which is usually done by remapping participants’ gaze into a ground truth (i.e., 
a common scene that both participants look at). The remapping processes is usually 
accomplished by disseminating fiducial markers in the environments and using this 
shared set of coordinates between each participant’s point of view and the ground truth 
(Fig. 2). When the two gaze points are remapped onto the ground truth, one can reuse 
the methodology described above for remote interactions and compute the same 
measure of joint visual attention.  
 
Finally, there are practical implications of using dual eye-tracking methodologies beyond 
quantitatively capturing collaborative processes. The last decade has seen a nascent 
interest for designing shared gaze visualization – i.e., displaying the gaze of one’s 
partner on a computer screen to support joint visual attention (see review by D’Angelo & 
Schneider, under review). Shared gaze visualizations have been found to facilitate 
communication through deictic references, disambiguate vague utterances and help 
participants anticipate their partner’s verbal contribution. This is an exciting new line of 



research, because work goes beyond descriptive measure of collaboration and 
suggests interventions to support collaboration.  
 
While the study of JVA through gaze sensing is reaching some maturity, there are 
obvious gaps in this area of research. Dual eye-tracking tends to be used in live remote 
collaboration, which is not the most ecological settings from an educational perspective. 
Most students still work in co-located spaces, where they work together face-to-face or 
side-by-side. This lack is slowly being addressed by new methodologies using mobile 
eye-trackers which brings more ecological validity to this field of research. 
 

Gesture Sensing in CSCL 

In contrast to eye-tracking, where researchers are looking at the x,y coordinate of a 
participant’s gaze, gesture tracking (and more generally motion sensing in CSCL) is 
operationalized at varying levels of granularity. These levels of analysis range from the 
mere quantification of movement or the complex identification of specific gestures in 
dyadic interactions to localizing people in physical learning spaces. Part of this breadth 
in levels of analysis reflects to relative infancy of this area of study. Researchers are in 
the process of determining the appropriate measures and theoretical grounding for 
gesture sensing. In this section, we present examples along this spectrum and further 
note how these approaches are utilized to examine and support collaboration. 
 
As is the case with eye tracking, the availability of low-cost gesture tracking technology 
has enabled researchers to develop and create interfaces that incorporate human 
gestures. Initially, many of these technological systems relied on an infrared camera 
(e.g., the Nintendo Wiimote) and an infrared source (e.g., an infrared pen, or television 
remote). This was, for example, used for the Mathematical Inquiry Trainer (Howison et 
al., 2011), a system that supports embodied learning of fractions. The next wave of 
gesture technology was heavily fueled by the Microsoft Kinect Sensor and supporting 
SDK. The Kinect Sensor V2 uses a depth camera to provide a computer vision based 
solution to track upper and lower body joints - as well as finger movement, head 
position, and even the amount of force applied to each appendage. Leong et al. (2015) 
provide an in-depth comparison of different depth cameras, and their capabilities. More 
recently, advances in computer vision have eliminated the need for specialized data 
capture hardware. Instead, OpenPose (Cao et al., 2017; Simon et al., 2017; Wei et al., 
2016) and DensePose (Güler et al., 2018), for example, train deep neural networks for 
estimating human body pose, from standard web images or videos cameras. As an 
example, Ochoa et al. (2018) use OpenPose to provide feedback to users about their 
body posture during oral presentation training. The result of these technological 
developments is a growing opportunity to employ use gesture sensing to study 
collaborative learning environments, without the need for expensive, or invasive 
wearables. 
 
As previously noted, research on motion sensing in CSCL operates at different levels of 
complexity (i.e., individual learning, small group interactions and localizing a larger 
number of participants in open spaces). Some studies are merely looking to quantify the 



amount of movement, others examine body synchrony, while still others are concerned 
with recognizing specific types of gestures or body movements. The specific 
approaches utilized, as well as how they are operationalized are necessarily impacted 
by the research questions being explored. 
 
At the individual level, several studies have looked at the potential of motion sensing for 
understanding learning and constructing models of the student learning experience. 
Schneider and Blikstein (2015), for example, tackled this question by examining 
prototypical body positions among pairs of learners completing an activity with a 
tangible user interface. The researchers categorized body postures using unsupervised 
machine learning algorithms and identified three prototypical states: an “active” posture 
(positively correlated with learning gains), a “semi-active” posture and a “passive” 
posture (negatively correlated with learning gains). Interestingly, the best predictor for 
learning was the number of times that participants transitioned between those states, 
suggesting a higher number of iterations between “thinking” about the problem and 
“acting” on it. Researchers interested in ITSs (Intelligent Tutoring Systems) have also 
used motion and affective sensing to predict levels of engagement, frustration and 
learning using supervised machine learning algorithms. Grafsgaard et al. (2014), for 
example, found indicators of engagement and frustration by leveraging features about 
face and gesture (e.g., hand-to-face gestures) and indicators of learning by using face 
and posture features. These two papers highlight the opportunity for motion sensing to 
help us better identify patterns of engagement that may be indicative of improved 
learning, or certain affective states. Specifically, gesture sensing can help researchers 
predict learning gains or affective states. 
 
At the group level, the most basic uses of gesture data involve the quantification of 
bodily movement among pairs of students collaborating on a given task. For example, 
Martinez-Maldonado, Kay, Buckingham Shum  & Yacef (2017) presented an application 
of the Kinect by locating it on top of an interactive tabletop to associate actions logged 
by the multitouch interface with the author of such a touch. Authors applied a sequential 
pattern mining algorithm on these logs to detect patterns that distinguished high from 
low performing small groups in a collaborative concept mapping task. Worsley and 
Blikstein (2013) used hand/wrist joint movement data to extract patterns of multimodal 
behaviors of dyads completing an engineering design activity. The gestural data, when 
taken in conjunction with audio and electro-dermal activation data was beneficial in 
codifying the types of actions students were taking at different phases of the building 
activity. Such information about student gestural engagement could also be used in a 
way that is analogous to analyses of turn-taking. Moreover, it can help answer 
questions about the extent of each participant’s physical contributions to a given 
learning activity, or, the patterns of participation that emerge between participants as 
they collaborate with one another. In the same vein, Won, Bailenson, and Janssen 
(2014) found that body movements captured by a Kinect sensor could predict learning 
with a 85.7% accuracy in a teacher-student dyad; the top three features were the 
standard deviation of the head and torso of the teacher, the skewness of students’ head 
and torso, and mean of teacher left arm. Other studies have looked at the relationship 
between body synchronization and group interaction. Won, Bailenson, Stathatos, and 



Dai (2014), for example, found that non-verbal synchrony predicted creativity in 52 
collaborative dyads. Models trained with synchrony scores could predict low or high 
scores of creativity with a 86.7% accuracy. In educational contexts, Schneider and 
Blikstein (2015) looked for the salience of body synchronization by considering the 
correlation between body position similarity and learning gains. However, the results 
indicated no correlation between learning and body synchronization in this context. 
Similarly, Spikol et al. (2017) paired a number of computer vision systems to detect 
wrist movement and face orientation of small groups of students performing an 
electronic toy prototyping task in triads. Results indicated that some features, such as 
the distance between all learners’ hands and the number of times they look at a shared 
screen, are promising in helping identify physical engagement, synchronicity and 
accountability of students’ actions. Concretely, motion sensing among groups of 
learners can be used to explain success within given collaborative experience as 
determined through the relative participation of each individual and their level of 
synchrony or proximity to their peers. 
 
Researchers are also finding ways to leverage gestural data as a means for 
streamlining and improving the data analysis process. In a study that involved pairs of 
students completing engineering design tasks, Worsley et al. (2015) was able to show 
that using body posture information to automatically segment data into meaningful 
chunks, led to analyses that provided stronger correlations with student performance 
and student learning. In this particular study, authors used automatically detected 
changes in head pose relative to learners’ partners to demark the beginning of a new 
phase. This approach was compared to human annotation of phases, and taking a fixed 
window approach, with the body position based segmentation proving to be quite 
beneficial. Hence, the utility of gesture data does not necessarily have to be restricted to 
a final correlation with learning or performance. It can, instead, be used to more 
adequately group chunks of data into meaningful representations. In this line of work, 
computational methods provide ways to model students’ behaviors. 
 
In another emerging body of work, researchers are exploring the use of gestures, in 
conjunction with other modalities, to better understand embodied learning in 
mathematics and science. For example, Abrahamson’s Mathematical Inquiry Trainers 
(Howison et al., 2011) and Robb Lindgren’s ELASTICS (Kang et al., 2018) platforms 
represent computer-supported tools that help facilitate student learning with the 
assistance of a more knowledgeable interviewer. In both instances, the interviewer 
serves as a collaborator to help guide the student towards learning and articulating 
mathematical or scientific ideas. In the case of Abrahamson’s work, students use their 
hands to reason about fractions, either through a touch screen interface, Nintendo Wii 
mote or Kinect sensor. In the case of ELASTICs, students use gestures to instantiate 
different mathematical operations. For example, in Kang et al. participants determine a 
gestural sequence that will allow them to produce a value of 431. In order to reach this 
value, students can complete gestures that correspond to add one, subtract one, 
multiply by ten or divide by ten. These sub-tasks exist within a larger task of helping 
students reason about exponential growth. Crucial for both Abrahamson and Lindgren’s 
work is the opportunity to create gestural interfaces that allow for embodied 



experiences, and the availability of visual representations that individuals and/or pairs 
can utilize to refine their thinking, and serve as a context for discussion. This kind of 
work exemplifies the potential of motion sensor data to support novel, embodied, 
collaborative learning. 
 
These different examples suggest that while there are some similarities and accepted 
practices in how to analyze gesture data (e.g., the use of joint angles as opposed to 
three dimensional x, y, z data), there are still several areas where new innovations and 
ideas are emerging. The identification of constructs that are analogous to the joint visual 
attention, for example, does not yet seem to exist within the gesture space. Instead, 
researchers have found and explored different metrics that aim to characterize the 
nature of collaboration among groups or pairs of learners.  
 

Comparison between Gaze Sensing and Gesture Sensing 

In this section we compare the state of the field in gesture and gaze sensing to illustrate 
opportunities and challenges to studying small collaborative groups using gaze and 
motion sensing. Both areas of research have been evolving at different paces, and have 
contributed unique findings to the study of collaborative learning Table 1 summarizes 
the main commonalities and differences across those two methodologies:  
 
Table 1 A comparison of the state of research using gaze and motion sensing based on 
the work reviewed in this chapter 

 Gaze Sensing Motion Sensing 

Raw measures x, y coordinates of gaze in a 2D 
space (e.g., remote or mobile 
eye-tracker) 

x, y ,z coordinates of dozens of 
body joints in a 3D space (e.g., 
Kinect sensor) 

Accuracy Accurate, depending on the eye-
tracker used.  

More noisy and susceptible to 
occlusion 

Constructs Joint visual attention (Schneider 
& Pea, 2013), attentional 
similarity (Sharma et al., 2013), 
... 

Body movement (Worsley & 
Blikstein, 2013), prototypical states 
(Schneider & Blikstein, 2015), 
physical synchrony (Won, 
Bailenson, Stathatos & Dai, 2014), 
... 

Methodology Well established; strong 
conventions (Richardson & Dale, 
2005). 

In development; currently, there are 
no strong conventions.  

Models Glass-box traditional statistical 
models (e.g., Sharma et al., 
2014); higher explainability, lower 
predictive value. 

Black-Box machine learning models 
(e.g., Won, Bailenson & Janssen, 
2014; Won, Bailenson, Stathatos & 
Dai, 2014;); lower explainability, 
higher predictive value. 



Theoretical basis Well-documented and specific, 
from developmental (Tomasello, 
1995) and social (Richardson et 
al., 2007) psychology 

Emerging and less prescriptive, e.g., 
embodied cognition (Howison et al., 
2011) 

 
A striking difference between those two fields of research is that gaze sensing - through 
the study of joint visual attention - has developed well-established conventions for 
visualizing and capturing collaborative processes. This work leverages foundational 
theories in developmental psychology and has specific hypotheses about the role of 
visual synchronization for social interactions. Because the raw measures are simpler 
and the theory is more prescriptive, it has allowed researchers to use more transparent 
(“glass-box”) statistical models (e.g., Richardson et al., 2007) and design innovative 
interventions to support collaborative processes - for example by building systems 
where participants’ gaze can be displayed in real-time and shared within the group 
(Schneider & Pea, 2013). Motion sensing, on the other hand, offers larger and more 
complex datasets. Because theoretical frameworks are less specific (i.e., embodied 
cognition), there is a wider variety of measures and models being used, with more 
researchers leveraging “black box” models (i.e., supervised machine learning 
algorithms) to predict collaborative processes (e.g., Won, Bailenson, & Janssen, 2014). 
While those models are designed to provide accurate predictions, they tend to be less 
transparent and offer fewer opportunities for designing interventions.  
 
In summary, gaze sensing has benefited from simpler constructs, more prescriptive 
theoretical frameworks, accurate sensors to reach a certain level of maturity. Motion 
sensing, on the other hand, has an untapped potential: the technology is rapidly 
improving and there are new opportunities to make theoretical contributions, develop 
innovative measures of group interaction, and design interventions to support 
collaborative learning processes. 
 

Fusion 

While most of the current body of work has looked at gaze and motion sensing in 
isolation, there is a growing interest in combining multiple sources of data to provide a 
more complete depiction of complex social aspects of human activity that would be hard 
to model considering one modality of group interaction only. In the examples discussed 
above, multiple data sources have been used to model different aspects of collaborative 
learning. For instance, gaze sensing is commonly paired with information generated by 
the learning systems or with transcripts (Schneider & Pea, 2015). Gestural data has 
been enriched by combining them with quantitative traces of speech, such as sound 
level (Spikol et al., 2017) or turn-taking patterns (Martinez-Maldonado et al., 2018), to 
give meaning to gestures and poses. However, the process of fusing across data 
streams can bring a number of challenges related to low-level technical issues, such as 
data modelling and pattern extraction; and higher-level aspects, such as sensemaking, 
data interpretation and identification of implications for teaching, learning or 
collaboration. 
 



Some low level challenges in fusing gaze, gesture and other sources of data are 
associated with deciding what features to extract from the data, and how to segment or 
group the multiple data streams with the purpose of jointly modelling a meaningful 
indicator of collaboration or learning. In terms of multi-feature extraction, researchers 
often overlook the opportunity to extract multiple pieces of information from a single 
data source. In the case of gaze data for example, multi-feature extraction includes 
determining fixations, saccades and pupil dilation from the single data source (i.e., the 
eye tracker). From skeletal tracking information one might extract pointwise velocity, 
angular displacement, or distance between body points. The challenge here is in giving 
interpretative meaning to the selected features that can be obtained from the data for 
particular contexts.  
 
This challenge also applies to how the data is grouped or segmented. Summary 
statistics represent a simple approach for investigating multimodal data. In principle, this 
approach merges all of the data from a given modality into a single representation. 
Researchers commonly use values of mean, median, mode, range, maximum and 
minimum. This accomplishes fusion across time, but can grossly oversimplify the data 
representation. Instead researchers may wish to ‘group’ data into meaningful segments. 
Within this paradigm, data can be segmented into chunks that range in size from the 
entire dataset all the way down to individual data points. One advantage of 
segmentation is that it can help surface patterns and trends that are localized to 
particular segments. For example, Worsley and Blikstein (2017) explored the 
affordances of segmentation by comparing three different approaches. These authors 
ultimately found that having a combination of semantically meaningful segments and a 
large number of segments yielded the most meaningful results.  
 
At a higher level, there are challenges in giving meaning to fused data across streams 
and participants. Fundamental to multimodal learning analytics is the idea that a given 
data stream can only be interpreted in the context of other data streams. However, a 
key question remains: on what basis can low-level indicators serve as proxies for higher 
order collaborative learning constructs? From a research perspective, this is a 
fundamental modelling problem that involves encoding low-level events in data 
representations that contain a certain amount of contextual information to facilitate 
higher level abstraction. This is manifested in the learning analytics and educational 
data mining communities in various forms such as stealth assessment (Shute and 
Ventura, 2013) and evidence-centered design (Mislevy et al., 2012). At the intersection 
between CSCL and learning analytics, this challenge has been called as mapping “from 
clicks to constructs” (Wise et al., 2020). 
 
From a teaching and learning perspective, modelling group constructs from multiple 
data streams is a prerequisite for creating interfaces that are intelligible to teachers and 
learners, who commonly do not have a strong analytical background. Until now, most 
multimodal analytics for group activity have mainly remained the preserve of 
researchers (Ochoa, 2017). Imbuing traces of gaze and gesture, and other sources of 
data, with contextual meaning can bring teachers and students into the sensemaking 
and interpretation loop. One promising approach is that of Echeverria’s et al. (2019) 



who proposed a modelling representation to encode each modality of data into one or 
more of the n columns of a matrix and segments that contain instances of group 
behaviors into the m rows. From this representation a set of group visualizations were 
proposed, each presenting information related to one modality of teamwork, namely 
speech, arousal, positioning and logged actions.  
 
In summary, there are numerous technical and sensemaking-related challenges related 
to combining multiple data sources that need to be addressed in turn. However, the 
potential benefits, such as the possibility of creating interpretable group models, 
generating deeper understanding of collaborative learning and deploying user interfaces 
that can provide tailored feedback on collocated activities, outweigh such challenges.  
 

The Future 
The last decade has seen an increasing number of research projects involving gaze and 
motion sensing. This is a positive development for the CSCL community. This 
methodology provides researchers with large amounts of process data and new tools to 
analyze them. Not only does it help automate time consuming analyses, but it also 
provides a new perspective to understand collaborative processes. Additionally, it 
provides researchers with opportunities to develop real-time interventions (for example 
through dashboards or awareness tools; Schneider & Pea, 2013).  
 
These advances are not without challenges. For example, most of the work presented 
in this chapter is about dyads, when collaborative groups are often larger than two 
participants. This poses new opportunities for adapting multimodal measures of 
collaboration for larger groups (e.g., is JVA occurring when all the participants - or just 
two group members? - are jointly looking at the same place at the same time?) 
Researchers are slowly starting to look at larger social contexts, but this is currently an 
understudied area of research.  
 
Another major area of work is the contribution of multimodal studies to theory. 
Researchers are designing more sophisticated measures of visual synchronization and 
collaboration (e.g., leadership behaviors, with-me-ness) and turning dual eye-tracking 
setups into interventions to support collaborative processes. However, this kind of 
empirical study needs to be replicated and refined before they can be established as 
significant theoretical contributions to the field of CSCL. More importantly, theories of 
collaboration have not yet benefited from more fine-grained multimodal measures of 
collaborative processes.  
 
Finally, it should be noted that most studies are unimodal or only combine two data 
streams together. Very few projects have attempted to combine data sources; Data 
fusion presents new opportunities for studying collaborative learning groups and 
capturing more sophisticated constructs. With these new opportunities also come 
increased concerns about data privacy: how should we handle questions around the 
collection, storage and analysis of potentially sensitive datasets? It will be important for 



the CSCL researchers to carefully reflect on these concerns as they look to drive 
innovation and advance knowledge.  
 
In the coming decade, we are expecting to see more affordable and accurate sensors 
emerge as well as easy-to-use toolkits for analyzing multimodal datasets. With an 
increased focus on data-driven approaches, we believe that multimodal sensing will 
become a common tool for educational researchers. Those new tools will provide new 
ways to build theories of collaboration and design interventions to support social 
interactions. We agree with Wise & Schwartz (2017), who argue that CSCL has to 
embrace those new methods if it wants to stay relevant in an increasingly data-driven 
world.  
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